1.由a^2-2006a+1=0,有a^2-2005a=a-1,a+1/a=2006.
所以,a^2-2005a+2006/(a^2+1)=a-1+(2006/a)/(a+1/a)=a-1+(2006/a)/2006=a-1+1/a=(a+1/a)-1=2006-1=2005.
2.a,b是方程x^2-7x+2=0的两根,由韦达定理有a+b=7,ab=2.
b/a+a/b=(a^2+b^2)/(ab)
=(a+b)^2/(ab)-2=7^2/2-2=45/2.
1.由a^2-2006a+1=0,有a^2-2005a=a-1,a+1/a=2006.
所以,a^2-2005a+2006/(a^2+1)=a-1+(2006/a)/(a+1/a)=a-1+(2006/a)/2006=a-1+1/a=(a+1/a)-1=2006-1=2005.
2.a,b是方程x^2-7x+2=0的两根,由韦达定理有a+b=7,ab=2.
b/a+a/b=(a^2+b^2)/(ab)
=(a+b)^2/(ab)-2=7^2/2-2=45/2.