(1)证明:在边AB上截取AE=MC,连接ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,
BE=AB-AE=BC-MC=BM,
∴∠BEM=45°,∴∠AEM=135°.
∵N是∠DCP的平分线上一点,
∴∠DCN=45°,∴∠MCN=135°.
在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,
∴△AEM≌△MCN,
∴AM=MN.
(2)结论AM=MN还成立
证明:在边AB上截取AE=MC,连接ME.
△ABC中,∠B=∠BCA=60°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,
BE=AB-AE=BC-MC=BM,
∴∠BEM=60°,∴∠AEM=120°.
∵N是∠ACP的平分线上一点,
∴∠ACN=60°,∴∠MCN=120.
在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,
∴△AEM≌△MCN,
∴AM=MN.