1.
OA*OB = 0
故 -1/2(x1)^2*-1/2(x2)^2 + (x1)*(x2) = 0
即 (x1)*(x2) + 4 = 0
而AM // AB的充要条件是 (y2 - y1)*(-x1) = (-2 - y1)*(x2 - x1)
化简即得(x1)*(x2) + 4 = 0,就是上面得到的结论,得证
2.
MA=-2MB
故 (x1, y1+2) = -2(x2, y2+2)
又 (x1)*(x2) + 4 = 0
得 x1 = -2sqrt(2)(就是-2倍根号2的意思) x2 = sqrt(2)(根号2)
A(-2sqrt(2), -4)
B(sqrt(2), -1)
所以直线AB方程可得
AB : y = 5/6*(sqrt(2))*x - 8/3