因为I+AB可逆,所以(I+AB)(I+AB)^(-1)=I,推出(B^(-1)B+AB)(B^(-1)B+AB)^(-1)=I,
(B^(-1)+A)BB^(-1)(B^(-1)+A)^(-1)=I 也就是(B^(-1)+A)(B^(-1)+A)^(-1)=I 所以B^(-1)+A可逆,又因为I+BA=B(B^(-1)+A) B可逆,B^(-1)+A可逆,所以I+BA 可逆,证毕
因为I+AB可逆,所以(I+AB)(I+AB)^(-1)=I,推出(B^(-1)B+AB)(B^(-1)B+AB)^(-1)=I,
(B^(-1)+A)BB^(-1)(B^(-1)+A)^(-1)=I 也就是(B^(-1)+A)(B^(-1)+A)^(-1)=I 所以B^(-1)+A可逆,又因为I+BA=B(B^(-1)+A) B可逆,B^(-1)+A可逆,所以I+BA 可逆,证毕