双重积分,先积X再积Y,好像是这样的吧.好长时间了,忘了.积X时,把Y当成常数.然后再积Y,然后我就不知道了.不好意思.这个书上应当有.看看吧.孩子.
计算曲面积分∫∫zdxdy其中L是旋转抛物面z=(x^2+y^2)/2介于平面z=0及z=2之间的部分的下侧
1个回答
相关问题
-
计算曲面积分∫∫(z^2+x)dydz-zdxdy,其中S是旋转抛物面z=(x^2+y^2)/2介于平面z=0及z=2之
-
计算曲面积分∫∫(z^2+x)dydz-zdxdy其中积分面为z=1/2(x^2+y^2)介于z=0,和z=2之间部分下
-
计算曲面积分∫∫(z^2+x)dydz-zdxdy其中积分面为z=1/2(x^2+y^2)介于z=0,和z=2之间部分下
-
计算曲面积分(如图),其中∑是介于平面Z=0和Z=H(H>0)之间的圆柱面x^2+y^2=R^2
-
曲面积分 ∫∫(2x+z)dydz+zdxdy 积分区域:z=x^2+y^2(0
-
第二型曲面积分 计算曲面积分∫∫xdxdy+ydxdz+zdxdy,∑是z=(x^2+y^2)^1/2在z=0和z=h之
-
计算曲面积分ff(xdydz+z平方dxdy)/x2+y2+z2,其中积分区域为曲面x2+y2=a2与平面z=a及z=-
-
计算曲面积分∫∫xdydz+zdxdy ,S是平面x+y+z=1在第一卦限部分的上侧
-
曲面积分xyzdS,Σ为抛物面z=x^2+y^2被平面z=1所截下的有限部分在第一卦限内的部分
-
计算∫∫(x+y^2)dzdx+zdxdy,其中∑是锥面z=√x^2+y^2被平面z=1所截下的在第一卦限的下侧