=(1/2)∫dx^2/(1+x^2+x^4) (t=x^2)
=(1/2)∫dt/(t^2+t+1)
=(1/2)∫dt/[(t+1/2)^2+3/4)
=(1/2)(2/√3)arctan[(t+1/2)/(√3/2)]+C
=(1/√3)arctan[(2t+1)/√3]+C
=(1/√3)arctan[(2x^2+1)/√3]+C
=(1/2)∫dx^2/(1+x^2+x^4) (t=x^2)
=(1/2)∫dt/(t^2+t+1)
=(1/2)∫dt/[(t+1/2)^2+3/4)
=(1/2)(2/√3)arctan[(t+1/2)/(√3/2)]+C
=(1/√3)arctan[(2t+1)/√3]+C
=(1/√3)arctan[(2x^2+1)/√3]+C