(1)设A(x1,y1),B(x2,y2)
联立方程y^2=-x,y=k(x+1)得:k^2x^2+(2k^2+1)x+k^2=0,
∴x1+x2=-(2k^2+1)/(k^2),x1x2=1
∴向量OA·向量OB=x1x2+y1y2=1+k^2(x1x2+x1+x2+1)=1+k^2-2k^2-1+k^2=0
(2)S△OAB=(OA*OB)/2=根号(x1^2+y1^2)*根号(x2^2+y2^2)/2=根号(x1^2-x1)*根号(x2^2+-x2)/2=根号(x1x2)*根号[(x1-1)(x2-1)]/2=根号(x1x2-x1-x2+1)/2=根号(4+1/k^2)/2=根号10
解得k=1/6或k=-1/6