题目三式分别为①②③
把②带入①得
kx1+x2+k-x1-kx2=1
(k-1)x1=1-k-(1-k)x2
x1=x2-1④
把④分别带入①、③得
k(x2-1)+x2+x3=1
x2-1+x2+kx3=k²
化简得
x3=(k+1)(1-x2)⑤
2x2+kx3=k²+1⑥
把⑤带入⑥得
2x2+k(k+1)(1-x2)=k²+1
2x2+k²-k²x2+k-kx2=k²+1
(2-k-k²)x2=1-k
(1-k)(2+k)x2=1-k
x2=1/k+2
因为分母为0时无解,得k=-2时无解
又由题意得当K=1时①②③式相等,则当K=1时有无限解
所以当k≠1且k≠-2时有唯一解