这过程我只能保证详细明白,不能保证不复杂.
将乒乓球平均分3组,每组4个球,取两组比较(第一次),接下来有两种情况
一、若一样
则异球存在于第三组,设为(A、B、C、D)【相比起二的判断,这里字母大小写与结果关】,标准球为T,则接下来取A+B+T:C+T+T(第二次)
-①若A+B+T=C+T+T,则D是异球,则取D:T(第三次),
--若D>T,则D为重异球,
--若D<T,则D为轻异球
-②若A+B+T>C+T+T,那么(A、B)中有一个重异球,或者C为轻异球,取A:B(第三次),
--若A=B,则C为轻异球,
--若A≠B,则重的球是异球
-③若A+B+T<C+T+T,那么(A、B)中有一个轻异球,或者C为重异球,取A:B(第三次),
--若A=B,则C为重异球,
--若A≠B,则轻的球是异球
二、若不一样
则定义这两组为A+B+C+D>a+b+c+d【大小写规则:由这里可知,下面的情况中,若异球是大写字母,那肯定重,是小写字母,那肯定轻】,标准球为T,
取A+B+C+a:D+T+T+T(第二次)
-①若A+B+C+a=D+T+T+T,则异球存在于(b、c、d)中,取b:c(第三次),
--若b=c,则d为轻异球,
--若b≠c则轻者为异球(小写)
-②若A+B+C+a>D+T+T+T,则(A、B、C、a)中有一个重异球,或者D为轻异球.由大小写规则可知,异球只可能存于(A、B、C)中,取A:B(第三次),
--若A=B,则C为重异球;
--若A≠B,则重的是异球
-③若A+B+C+a<D+T+T+T,则(A、B、C、a)中有一个轻异球,或者D为重异球,由大小写规则可知,异球只可能存于(a、D)中,取a:T(第三次),
--若a=T,则D为重异球,
--若a≠T,则a是轻异球