y‘=y^2(x^2+1) ==>y'/y^2=x^2+1,∫dy/y^2=∫(x^2+1)dx,-1/y=(x^3)/3+x+C,通解y=-1/[(x^3)/3+x+C]
y'+ysinx ==> y'=-ysinx ,y'/y=-sinx,dy/y=-sinxdx,∫dy/y=-∫sinxdx,ln|y|=cosx+C,|y|=e^(cosx+C)=[e^(cosx)][e^C]y=C1[e^(cosx)](C,C1为任意常数)
y‘=y^2(x^2+1) ==>y'/y^2=x^2+1,∫dy/y^2=∫(x^2+1)dx,-1/y=(x^3)/3+x+C,通解y=-1/[(x^3)/3+x+C]
y'+ysinx ==> y'=-ysinx ,y'/y=-sinx,dy/y=-sinxdx,∫dy/y=-∫sinxdx,ln|y|=cosx+C,|y|=e^(cosx+C)=[e^(cosx)][e^C]y=C1[e^(cosx)](C,C1为任意常数)