在等差数列{an}性质:
若m+n=p+q,则am+an=ap+aq
因1+(2n-1)=n+n.所以有 a1+a(2n-1)=2an
故S(2n-1)=(2n-1)(a1+a(2n-1))/2=(2n-1)an
同理T(2n-1)=(2n-1)bn
故an/bn=S(2n-1)/T(2n-1)
=2(2n-1)/(3(2n-1)+1)
=(4n-2)/(6n-2)
=(2n-1)/(3n-1)
不妨设一个非零常数K,令an=(2n-1)K,同样bn=(3n-1)K.
则a3=5K,b5=14K
故a3/b5=5/14. 答案选D!