证明:连接AD,OD,AB为圆O的直径,则 AD⊥BC于D
又 AB=AC,则 D为BC的中点 O为AB中点
∴ OD//AC(中位线) 则 ∠ODA=∠DAE
由DE⊥AC于点E,得 ∠DAE+∠ADE=90°
则 ∠ODA+∠ADE=90° 即 ∠ODE=90°
即 OD⊥DE 故 DE是圆的切线
在△ABC中,AB=AC=8,∠B=30°,AD为底边上的高
则 ∠C=30° CD=4根号3 ∴ DE=CD/2=2根号3
证明:连接AD,OD,AB为圆O的直径,则 AD⊥BC于D
又 AB=AC,则 D为BC的中点 O为AB中点
∴ OD//AC(中位线) 则 ∠ODA=∠DAE
由DE⊥AC于点E,得 ∠DAE+∠ADE=90°
则 ∠ODA+∠ADE=90° 即 ∠ODE=90°
即 OD⊥DE 故 DE是圆的切线
在△ABC中,AB=AC=8,∠B=30°,AD为底边上的高
则 ∠C=30° CD=4根号3 ∴ DE=CD/2=2根号3