F1(-c,0),B(0,b),
∴F1B:x/(-c)+y/b=1,即y=b(x/c+1)①
代入x^/a^-y^/b^=0,得x^/a^-(x^/c^+2x/c+1)=0,
b^x^-2a^cx-a^c^=0,
设P(x1,y1),Q(x2,y2),则
x1+x2=2a^c/b^,
PQ的中点N:xN=(x1+x2)/2=a^c/b^,
由①,yN=b(a^/b^+1)=c^/b,
∴PQ的中垂线:y-yN=(-c/b)(x-xN),
令y=0,得xM=(b/c)yN+xN=c+a^c/b^,
由|MF2|=|F1F2|得a^c/b^=2c,
∴a^=2b^=2(c^-a^),
∴3a^=2c^,(a/c)^=2/3,
设两渐近线的夹角为2α,易知cosα=a/c,
∴cos2α=2(cosα)^-1=2*2/3-1=1/3.选D.