如图甲,已知在圆O忠,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长交圆
1个回答
(1)连结EC
∵点C是劣弧AB上的中点
∴弧BC=弧CA
∴∠BEC=∠CEA
又∵AC=CD
∴△DEA为等腰△
∴EC⊥AD(等腰三线合一)
∴∠ECA=90° ...
相关问题
在圆O中,C为劣弧AB的中点,连接AC并延长至点D,使CD=CA,连接DB,并延长交圆O于点E,连接AE
已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙o于E,连AE.
如图1,在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB 并延长交⊙O于点E,连接AE.
1、已知弦AB=AC,延长CA至D,使AC=AD,连接DB并延长交圆O于E,连接CE,求证:CE是圆O的直径
A B是圆O上的两点 C是劣弧AB的中点 连结并延长至D 使AC=CD 连结DB并延长交圆O于E 连结AE
如图,ab,ac是圆o中相等的两弦,延长ca到点d,使ad=ac,连接db并延长交圆o于点e,连接ce.求证:ce是圆o
AB.AC是圆O内相等的两弦,延长CA到D,使AD=AC,连DB并延长交圆O于E,连接BC,求证:∠EBC=90°.
如图,AB是圆O的直径,BC⊥AB,垂足为点B,连接CO并延长交圆O于D、E,连接AD并延长交BC于点F.
AB,AC是圆O的两条弦,且AB=AC,延长CA到点D,使AD=AC,连结DB并延长,交圆O于点E
如图,AB,AC是圆心o的两条相等的弦,延长CA到点D,使AD=AC,连接DB并延长交圆心O于点E,连接CE.CE是圆心