分为两种情况求
(1)AB=AD+BE+DE:
此时,容易证明△AEC∽△BCD
AE/BC=AC/BD
即:AC*BC=AC^2=(AB-4)*(AB-3)=AB^2-7AB+12
AB^2=2*AC^2
解得AB=12,DE=5
S△ABC=36
(2)AB=AE+BD-DE
此时,容易证明△ADC∽△BCE
AD/BC=AC/BE
AC*BC=AC^2=AD*BE=12,
AC=2根号3
S△ABC=6
分为两种情况求
(1)AB=AD+BE+DE:
此时,容易证明△AEC∽△BCD
AE/BC=AC/BD
即:AC*BC=AC^2=(AB-4)*(AB-3)=AB^2-7AB+12
AB^2=2*AC^2
解得AB=12,DE=5
S△ABC=36
(2)AB=AE+BD-DE
此时,容易证明△ADC∽△BCE
AD/BC=AC/BE
AC*BC=AC^2=AD*BE=12,
AC=2根号3
S△ABC=6