tan[(A+B)/2]+tanC/2=4
=>
cotC/2+tanC/2=4,
cotC/2*tan/C/2=1
解得:
tanC/2=2+√3或2-√3
C为锐角
=>
tanC/2=2-√3
C/2=15
C=30
sinBsinC=(1+cosA)/2
=1/2*(1-cos(B+C))
=1/2*(1-cosBcosC+sinBsinC)
=>
cos(B-C)=1
B=C=30
A=120
b=c=1/√3*a=2
tan[(A+B)/2]+tanC/2=4
=>
cotC/2+tanC/2=4,
cotC/2*tan/C/2=1
解得:
tanC/2=2+√3或2-√3
C为锐角
=>
tanC/2=2-√3
C/2=15
C=30
sinBsinC=(1+cosA)/2
=1/2*(1-cos(B+C))
=1/2*(1-cosBcosC+sinBsinC)
=>
cos(B-C)=1
B=C=30
A=120
b=c=1/√3*a=2