不妨设x1x2
原式即t*{f(x2)-f[(1-t)*x1+t*x2]}>=(1-t){f[(1-t)*x1+t*x2]-f(x1)}(1)
f(x)在[x1,x2]内连续(x1,x2)内可导
则由中值定理得
f(x2)-f[(1-t)*x1+t*x2]=f'(m)*(1-t)*(x2-x1) m∈((1-t)*x1+t*x2,x2)
f[(1-t)*x1+t*x2]-f(x1)=f'(n)*t*(x2-x1) n∈(x1,(1-t)*x1+t*x2)
又f"(x)>=0 m>n 得f'(m)>=f'(n) 又0