解题思路:(1)∠BCD与∠ABC是两平行直线AB、CD被BC所截得到的内错角,所以根据两直线平行,内错角相等即可求解;
(2)根据角平分线的定义求解即可;
(3)根据互余的两个角的和等于90°,计算即可;
(4)先根据两直线平行,同旁内角互补和角平分线的定义求出∠BCN的度数,再利用互余的两个角的和等于90°即可求出.
(1)①两直线平行,内错角相等;60;
②30;
③60.
(2)∵AB∥CD,
∴∠B+∠BCE=180°,
∵∠B=40°,
∴∠BCE=180°-∠B=180°-40°=140°.
又∵CN是∠BCE的平分线,
∴∠BCN=140°÷2=70°.
∵CN⊥CM,
∴∠BCM=90°-∠BCN=90°-70°=20°.
点评:
本题考点: 平行线的性质;角平分线的定义;余角和补角.
考点点评: 本题主要利用平行线的性质和角平分线的定义,熟练掌握性质和概念是解题的关键.