由函数f(x)=Asin(wx+n)(A>0,w>0)在x=1的时候取最大值A
可知sin(w+n)=1
由(sin(w+n))^2+(cos(w+n))^2=1
cos(w+n)=0
f(x+1)=Asin(w(x+1)+n)=Asin(wx+n+w)
=A[sin(wx)cos(wx+n)+cos(wx)sin(wx+n)]
=A[cos(wx)*1]
=Acos(wx)
显然f(x+1)=Acos(wx)是偶函数
由函数f(x)=Asin(wx+n)(A>0,w>0)在x=1的时候取最大值A
可知sin(w+n)=1
由(sin(w+n))^2+(cos(w+n))^2=1
cos(w+n)=0
f(x+1)=Asin(w(x+1)+n)=Asin(wx+n+w)
=A[sin(wx)cos(wx+n)+cos(wx)sin(wx+n)]
=A[cos(wx)*1]
=Acos(wx)
显然f(x+1)=Acos(wx)是偶函数