欧拉是这样做的
首先展开sinx/x=1-x^2/3!+x^4/5!+.
然后利用sinx/x的零点,容易知零点为nπ
所以sinx/x=(1-x/π)(1+x/π)(1-x/2π)(1+x/2π)+.=(1-x^2/π^2)(1-x^2/4π^2).(1-x^2/n^2π^2)
比较展开式和上式中x^2的系数得
-x^2(1+1/4+1/9+.1/n^2)/π^2=-x^2/3!
所以1+1/4+1/9+.1/n^2=π^2/6
2.当然也可以用傅立叶级数做,每本高数课本上都有具体的做法,展开f(x)=|x|,x属于(-π,π)
第3种方法可以用黎曼zeta函数和伯努利数的关系
Zeta(k)=2^(2k-1)*B(k)*π^(2k)/(2k)! ,其中B(1)=1/3
令k=1,得Zeta(2)=π^2/6