由偏导数定义有δf(x,y)/δx=lim(x0→0)[f(x+x0,y)-f(x,y)]/x0
可见将y看作常量时偏导数与导数类似,因此偏导数仍满足导数的一些规则
偏导符号里面有加减号的话能分开求
不仅如此,乘积的偏导数仍满足乘积的导数的求导法则
以z=2xyf1为例 它可看作z1=2xy z2=f1的乘积 z=z1*z2
δz/δx=z2δz1/δx+z1δz2/δx,因此也解释了多出来的2xf1-f2/x²
不光含有f还含有x、y的话,只要将另一变量看作常量,原式看作该变量
的复合函数,按照导数的法则去求即可