1>证明:设x1=a1+b1*根号2,x2=a2+b2*根号2 (a,b系列均为有理数),所以x1+x2=(a1+a2)+(b1+b2)*根号2,由有理数线性运算的封闭性,得:a1+a2,b1+b2均为有理数,所以x1+x2属于A;
x1*x2=(a1+b1*根号2)(a2+b2*根号2)=(a1*a2+2b1*b2)+(a1*b2+a2*b1)*根号2,同上,得:x1*x2属于A.
2〉结论:是的
证明:设y1=a1+b1*根号2,y2=a2+b2*根号2(a,b系列均为有理数,y2非零),所以y1/y2=(a1+b1*根号2)*(a2-b2*根号2)/[(a2)^2-2(b2)^2]
={(a1*a2-2b1*b2)/[(a2)^2-2(b2)^2]}+{(a2*b1-a1*b2)*根号2/[(a2)^2-2(b2)^2]}
因为a1*a2-2b1*b2 ,[(a2)^2-2(b2)^2],a2*b1-a1*b2均为有理数且[(a2)^2-2(b2)^2]非零,根据一个有理数与另一个非零有理数之商亦为有理数,得:{(a1*a2-2b1*b2)/[(a2)^2-2(b2)^2]}与(a2*b1-a1*b2)/[(a2)^2-2(b2)^2]均为有理数,所以y1*y2属于A.
by the way,你的题目抄掉了!集合没有代表元素?!