设函数f(x)在[0,1]上具有三节连续导数且f(0)=1, f(1)=2, f'(1/2)=0.证明:(0,1)内至少

2个回答

  • 在1/2处泰勒展开:

    f(1) = f(1/2)+f’(1/2)*1/2+f’’(1/2)/2*(1/2)^2 +f’’’(t)/6*(1/2)^3

    = f(1/2) + f’’(1/2)/8+f’’’(t)/48,

    其中 1/2<t<1

    类似,有:

    f(0)= f(1/2) + f’’(1/2)/8-f’’’(s)/48,

    其中 0<s<1/2

    两式向减得:

    2-1 = (f’’’(s)+f’’’(t))/48

    f’’’(s)+f’’’(t)= 48

    所以 2max{|f’’’(s)|,|f’’’(t)|}>=

    |f’’’(s)|+|f’’’(t)|>=f’’’(s)+f’’’(t)= 48

    ==> max{|f’’’(s)|,|f’’’(t)|}>= 24

    所以结论成立.