f(x)=x^2+x/x-1
=(x^2-x+2x)/(x-1)
=x+2+2/(x-1)
=(x-1)+2/(x-1) +3
≥2×√[(x-1)·2/(x-1)] +3
=3+2√2
.
f'(x)=[x+2+2/(x-1)]'
=1-2/(x-1)^2
则f'(1+√2)=0.
当x∈[2,1+√2]时,f'(x)
f(x)=x^2+x/x-1
=(x^2-x+2x)/(x-1)
=x+2+2/(x-1)
=(x-1)+2/(x-1) +3
≥2×√[(x-1)·2/(x-1)] +3
=3+2√2
.
f'(x)=[x+2+2/(x-1)]'
=1-2/(x-1)^2
则f'(1+√2)=0.
当x∈[2,1+√2]时,f'(x)