(1) f(x)=ax^3/3+(b-1)x^2/2+x
f'(x)=ax^2+(b-1)x+1=a(x-x1)(x-x2)
由韦达定理x1*x2=1/a,x1+x2=(1-b)/a
a=1/(x1x2),b=1-(1/x1+1/x2)
f'(-2)=4a-2b+3=4/x1x2+2/x1+2/x2+1
=(2/x1+1)(2/x2+1)
如果0<x1<2<x2<4->2/x1>1,2/x2>2/4
则f'(-2)>2×(3/2)=3
(2)f'(x)=ax^2+(b-1)x+1
如果0
(1) f(x)=ax^3/3+(b-1)x^2/2+x
f'(x)=ax^2+(b-1)x+1=a(x-x1)(x-x2)
由韦达定理x1*x2=1/a,x1+x2=(1-b)/a
a=1/(x1x2),b=1-(1/x1+1/x2)
f'(-2)=4a-2b+3=4/x1x2+2/x1+2/x2+1
=(2/x1+1)(2/x2+1)
如果0<x1<2<x2<4->2/x1>1,2/x2>2/4
则f'(-2)>2×(3/2)=3
(2)f'(x)=ax^2+(b-1)x+1
如果0