1.a点乘b = √3*(1/2) + (-1) * √3/2 = 0
所以,向量a ⊥向量b
2.x = a - 2b = (√3-1,-1-√3)
y=-ka + b = (-√3k+1/2,k +√3/2)
向量x ⊥向量y ,得到 x点乘y = 0
x点乘y = (√3-1)(-√3k+1/2) + (-1-√3)( k +√3/2) = -4k -2=0
k=-1/2
1.a点乘b = √3*(1/2) + (-1) * √3/2 = 0
所以,向量a ⊥向量b
2.x = a - 2b = (√3-1,-1-√3)
y=-ka + b = (-√3k+1/2,k +√3/2)
向量x ⊥向量y ,得到 x点乘y = 0
x点乘y = (√3-1)(-√3k+1/2) + (-1-√3)( k +√3/2) = -4k -2=0
k=-1/2