1:求数列1/1×2,1/2×2,1/3×4,…,1/n(n+1)…的前n项和Sn

1个回答

  • (1)、1/1×2+1/2×2+1/3×4+…+1/n(n+1)…

    =1-1/2+1/2-1/4+1/3-1/4+1/4-1/5+...+1/n-1/(n+1)+.

    =3/4+1/3+1/n

    =13/12

    (2)、Sn=1/2[1-1/3+1/2-1/4+1/3-1/5+1/5-1/7...+1/n-1/(n+2)]

    =1/2*4/5

    =2/5

    (3)、Sn=1/2+2/4+3/8+...+n/2^n

    1/2Sn=1/4+2/8+3/16+...+(n-1)/2^n+n/2^(n+1)

    两式相减得

    1/2Sn=1/2+1/4+1/8+...+1/2^n-n/2^(n+1)

    =[1/2(1-1/2^n)]/(1-1/2)-n/2^(n+1)

    =1

    Sn=2

    (4)Sn=1×2∧0+3×2∧1+5×2∧2+…+(2n-1)×2∧(n-1)

    2Sn=1×2∧1+3×2∧2+5×2∧3+…+(2n-3)×2∧(n-1)+(2n-1)×2∧n

    两式相减得

    -Sn=1×2∧0+2×2∧1+2×2∧2+2×2∧3+…+2×2∧(n-1)-(2n-1)×2∧n

    =1+2^2+2^3+...2^n-(2n-1)×2∧n

    =-3+2^n-n2^(n+1)

    Sn=3-2^n+n2^(n+1)

    (5)an=(2n+1)×2∧n,

    数列2∧n/(2n-1)an=2^2n×(2n+1)/(2n-1)

    =2^2n×(1+2/(2n-1))

    =2^2n+2^(2n+1)/(2n-1)

    实在不想写了,就那个思路,自己想想就好了