设t=x^2
则y^2=3-x^2=3-t
设z=x^2*y^4
=t(3-t)^2
=t(t-3)^2
z′(t)=(t-3)^2+2t(t-3)
=3t^2-12t+9
z′(t)=0时,解得t=1或3
所以z(t)在t=1和3时取得极值
z(1)=1(1-3)^2=4
z(3)=3(3-3)^2=0
所以在t=1时取得最大值
x2*y4的最大值为4
设t=x^2
则y^2=3-x^2=3-t
设z=x^2*y^4
=t(3-t)^2
=t(t-3)^2
z′(t)=(t-3)^2+2t(t-3)
=3t^2-12t+9
z′(t)=0时,解得t=1或3
所以z(t)在t=1和3时取得极值
z(1)=1(1-3)^2=4
z(3)=3(3-3)^2=0
所以在t=1时取得最大值
x2*y4的最大值为4