(1)是,证明略。
(2)
(1)当BD=AC=4时,△PAD是以AD为底边的等腰三角形
∵P是优弧BAC的中点∴弧PB=弧PC
∴PB=PC
∵BD=AC=4 ∠PBD=∠PCA
∴△PBD≌△PCA
∴PA="PD " 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知,当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=
AD=1
∵∠PCB=∠PAD
∴cos∠PAD=cos∠PCB=
∴PA=
(1)是,证明略。
(2)
(1)当BD=AC=4时,△PAD是以AD为底边的等腰三角形
∵P是优弧BAC的中点∴弧PB=弧PC
∴PB=PC
∵BD=AC=4 ∠PBD=∠PCA
∴△PBD≌△PCA
∴PA="PD " 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知,当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=
AD=1
∵∠PCB=∠PAD
∴cos∠PAD=cos∠PCB=
∴PA=