⑴.∵∠PCD=∠PDC,∠DCB=∠DCA
∴∠PCB=∠PCD-∠DCB=∠PDC-∠DCA=∠PAC.从而PC为切线.
(过C向上作切线CP′,则∠P′CB=∠PAC=∠PCB.CP与CP′重合.)
⑵.作直径AQ,连接BQ.则:
AQ=AB/sin∠BQA=AB/sin∠BCA=AC/sin∠ABC=8/(2/3)=12.
圆O的半径=6.
⑴.∵∠PCD=∠PDC,∠DCB=∠DCA
∴∠PCB=∠PCD-∠DCB=∠PDC-∠DCA=∠PAC.从而PC为切线.
(过C向上作切线CP′,则∠P′CB=∠PAC=∠PCB.CP与CP′重合.)
⑵.作直径AQ,连接BQ.则:
AQ=AB/sin∠BQA=AB/sin∠BCA=AC/sin∠ABC=8/(2/3)=12.
圆O的半径=6.