不要拘泥这种解题技巧,也不一定快捷.更一般方法:C=120°-B
由正弦定理:a/sinA=c/sinC=b/sinB=√3/sin60°=2,得:b=2sinB,c=2sinC
所以:AB+2BC=c+2b=4sinB+2sinC=4sinB+2sin(120°-B)
=5sinB+√3cosB
=4√3(5/4√3*sinB+√3/4√3*cosB)
= 4√3sin(B+Q) ( 其中辅助角Q:tanQ=√3/5)
所以最大值:4√3
不要拘泥这种解题技巧,也不一定快捷.更一般方法:C=120°-B
由正弦定理:a/sinA=c/sinC=b/sinB=√3/sin60°=2,得:b=2sinB,c=2sinC
所以:AB+2BC=c+2b=4sinB+2sinC=4sinB+2sin(120°-B)
=5sinB+√3cosB
=4√3(5/4√3*sinB+√3/4√3*cosB)
= 4√3sin(B+Q) ( 其中辅助角Q:tanQ=√3/5)
所以最大值:4√3