用反证法证明:在同一平面内,a,b,c互不重合,若a∥b,b∥c,则a∥c.

2个回答

  • 解题思路:先假设a与c相交,然后经过推导得出与已知或定理相矛盾,从而证得原结论成立.

    假设a∥c不成立,则a,c一定相交,假设交点是P;

    则过点P,与已知直线b平行的直线有两条:a、c;

    与经过一点有且只有一条直线与已知直线平行相矛盾;

    因而假设错误.

    故a∥c.

    点评:

    本题考点: 反证法.

    考点点评: 解此题关键要懂得反证法的意义及步骤.反证法的步骤是:

    (1)假设结论不成立;

    (2)从假设出发推出矛盾;

    (3)假设不成立,则结论成立.

    在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.