二年级的概念整理,重谢要求整理初一和初二的概念,简洁点最好,

1个回答

  • 初中数学知识点总结 一、基本知识 一、数与代数A、数与式: 1、有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.②任何一个有理数都可以用数轴上的一个点来表示.③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数.在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等.④数轴上两个点表示的数,右边的总比左边的大.正数大于0,负数小于0,正数大于负数. 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0.两个负数比较大小,绝对值大的反而小. 有理数的运算: 加法:①同号相加,取相同的符号,把绝对值相加.②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.③一个数与0相加不变. 减法:减去一个数,等于加上这个数的相反数. 乘法:①两数相乘,同号得正,异号得负,绝对值相乘.②任何数与0相乘得0.③乘积为1的两个有理数互为倒数. 除法:①除以一个数等于乘以一个数的倒数.②0不能作除数. 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数. 混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的. 2、实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根.②如果一个数X的平方等于A,那么这个数X就叫做A的平方根.③一个正数有2个平方根/0的平方根为0/负数没有平方根.④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数. 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根.②正数的立方根是正数、0的立方根是0、负数的立方根是负数.③求一个数A的立方根的运算叫开立方,其中A叫做被开方数. 实数:①实数分有理数和无理数.②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样.③每一个实数都可以在数轴上的一个点来表示. 3、代数式 代数式:单独一个数或者一个字母也是代数式. 合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项.②把同类项合并成一项就叫做合并同类项.③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变. 4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式.②一个单项式中,所有字母的指数和叫做这个单项式的次数.③一个多项式中,次数最高的项的次数叫做这个多项式的次数. 整式运算:加减运算时,如果遇到括号先去括号,再合并同类项. 幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样. 整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加. 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式. 方法:提公因式法、运用公式法、分组分解法、十字相乘法. 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0.②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变. 分式的运算: 乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母. 除法:除以一个分式等于乘以这个分式的倒数. 加减法:①同分母分式相加减,分母不变,把分子相加减.②异分母的分式先通分,化为同分母的分式,再加减. 分式方程:①分母中含有未知数的方程叫分式方程.②使方程的分母为0的解称为原方程的增根. B、方程与不等式 1、方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程.②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式. 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1. 二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程. 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组. 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解. 二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解. 解二元一次方程组的方法:代入消元法/加减消元法. 一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程 1)一元二次方程的二次函数的关系 大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了.那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点.也就是该方程的解了 2)一元二次方程的解法 大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解 (1)配方法 利用配方,使方程变为完全平方公式,在用直接开平方法去求出解 (2)分解因式法 提取公因式,套用公式法,和十字相乘法.在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解 (3)公式法 这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a 3)解一元二次方程的步骤: (1)配方法的步骤: 先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式 (2)分解因式法的步骤: 把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式 (3)公式法 就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 4)韦达定理 利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a.利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用 5)一元一次方程根的情况 利用根的判别式去了解,根的判别式可在书面上可以写为“△”,读作“diao ta”,而△=b2-4ac,这里可以分为3种情况: I当△>0时,一元二次方程有2个不相等的实数根; II当△=0时,一元二次方程有2个相同的实数根; III当△B,A+C>B+C 在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C 在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0) 在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C