设f(x)二阶可导,limx趋向于0[f(x)/x]=1,且f'(x)>0,证明f(x)>=x
2个回答
这个结论是错误的.
如 f(x)=1/3*x^3+x ,满足所有条件,但当 x
相关问题
证明,设函数f(x)在(x0,+∞)内二阶可导,且limx->x0 f(x)=0,limx->+∞ f(x)=0,则在区
设f(x)二阶可导,且f(0)=0,f′(0)=1,f″(0)=2,则limx→0f(x)−xx2=______.
设函数f(x)在点x=0的某邻域内可导,且f'(0)=0,Limx趋向于0 f '(x)/x =-
设f(x)可导,且f(0)=0,证明F(X)=f(x)(1+/SINX/)在x=0处可导
设limx→0f(x)/x=1,且f‘’(x)>0,证明:f(x)>x.
f(x)在[0,1]上二阶可导,f(0)=0,且f''(x)/f'(x)≠2/(1-x).试证明方程:f(x)/f'(x
设函数f(x)在x=0点可导,且f(0)=0,f‘(0)=1,则limx—0 f(x)/x=?
设f(x)在x=0处二阶可导,又limx→0f(x)1−cosx=A,求:
设f(x)有二阶连续导数且f'(0)=0,lim(x趋向于0)f''(x)/|x|=1则
f(x)在[-1,1]可导,在x=0二阶可导,f'(0)=0,f''(0)=4,求极限limx→0﹛f(x)-f[㏑﹙1