解题思路:由三视图知是三棱锥,且同一点出发的三条棱长度为1,以其中两条棱组成的直角三角形为底,另一棱为高,利用体积公式求得其体积.
根据三视图,可知该几何体是三棱锥,
右图为该三棱锥的直观图,
并且侧棱PA⊥AB,PA⊥AC,AB⊥AC.
则该三棱锥的高是PA,底面三角形是直角三角形,
所以这个几何体的体积为:V=
1
3S△ABC•PA=[1/3×
1
2×1×1×1=
1
6],
故答案为:[1/6].
点评:
本题考点: 由三视图求面积、体积.
考点点评: 本题考查三视图,由三视图求原几何体的体积和面积,关键是由三视图中的平行垂直关系,确定原几何体中的平行垂直关系,以及三视图中的长度关系,确定原几何体中的长度关系,属于简单题.