1.
∵a(n+1)=(an)^2+2an
∴a(n+1)+1=(an+1)^2.(1)
又∵a1=2>1
易之an>0
∴对(1)两边取常用对数,则:
lg[a(n+1)+1]=2lg(an+1)
又∵an+1≠1
∴lg[a(n+1)+1]/lg(an+1) = 2
即数列{lg(an+1)}是公比为2,首项为lg3的等比数列
2.
lg(an+1)=lg3 * (2^n -1)
lgTn=lg(1+a1)+lg(1+a2)+...+lg(1+an)
=lg3*[2-1+2^2-1+...+2^n-1]
=lg3*[2^(n+1)-n-2]
∴Tn=3^[2^(n+1)-n-2]