根据对称性,等腰△ABC底边平行椭圆的长轴时,△顶点A与某个椭圆短轴顶点重合.
由对称性,不妨设A与上顶点重合,则A(0 ,2),设B左C右,并设C(2√3cosγ ,2sinγ),则BC中点D(0,2sinγ),∣CD∣ = 2√3cosγ,∣AD∣ = 2 - 2sinγ,且cosγ≠0
∴S = ∣CD∣·∣AD∣·2·(1/2) = 4√3·cosγ·(1-sinγ)《4√3·(1/2)·[(cosγ)^2 + (1-sinγ)^2]
当且仅当cosγ = (1-sinγ)取等号,带入同角关系式解得cosγ = 1 ,sinγ = 0
∴S(max) = 4√3