数学史上的三次数学危机分别发生在公元前5世纪、17世纪、19世纪末,都是发生在西方文化大发展时期.因此,数学危机的发生,都有其一定的文化背景.
这三次数学危机分别是:
第一次:古希腊时代,由于不可公度的线段――无理数的发现与一些直觉的经验想抵触而引发的;
第二次:是在牛顿和莱布尼茨建立了微积分理论后,对无穷小量的理解未及深透引起的;
第三次:是当罗素发现了集合论中的悖论,危及整个数学的基础而引起的.
三次数学危机尽管当时对数学和哲学都造成了巨大的影响,给当时某个时期造成了某种困境,然而由于一直未妨碍数学的发展与应用.反而在困境过后去,给数学的发展带来了新的生机.