若x1,x2,x3.xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2]
设方差为S^2,平均数为x
1若:
平均数变为(x+a)那么,每个数也增加了a,则方差为:S^2.(方差不变)
2若:
平均数为bx那么,每个数是原来的b倍,则方差为 :b^2*S^2,(即扩大了b^2倍)
若x1,x2,x3.xn的平均数为m
则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.+(xn-m)^2]
设方差为S^2,平均数为x
1若:
平均数变为(x+a)那么,每个数也增加了a,则方差为:S^2.(方差不变)
2若:
平均数为bx那么,每个数是原来的b倍,则方差为 :b^2*S^2,(即扩大了b^2倍)