提示一下
设三角形ABC,AB边上有三等分点D、E,BC边上二等分点F,AF交DC、EC于G、N,
过D作DM平行BC交AF于M、过E作EN平行BC交AF于N
设三角形ABC面积为S
AD/AB=DM/BF=DM/CF=DG/GC=1/3,DG/CD=1/(1+3)=1/4
则S(ADC)=S/3,S(ADG)=S(ADC)/4=S/12,S(AGC)=S/3-S/12=S/4
AE/AB=EN/BF=EN/CF=EG/GC=2/3,EG/EC=2/(2+3)=2/5
则S(AEC)=2S/3,S(AEH)=S(AEC)*2/5=4S/15,S(AHC)=2S/3-4S/15=2S/5
S(EDGH)=S(AEH)-S(ADG)=4S/15-S/12=11/60
S(GHC)=S(AHC)-S(AGC)=2S/5-S/4=3S/20
S(ABF)=S/2,S(AFC)=S/2
S(BEHF)=S(ABF)-S(AEH)=S/2-4S/15=7S/30
S(GFC)=S(AFC)-S(AHC)=S/2-2S/5=S/10
面积最大的三角形为AGC,则S/4=60,S=240
则S(ADG)=20
S(EDGH)=44
S(BEHF)=56
S(AGC)=60
S(GHC)=36
S(GFC)=24