(x+1/x)(x^2+1/x^2)(x^4+1/x^4)(x^8+1/x^8)(x^16+x^16)(x^2-1) =(x+1/x)(x^2+1/x^2)(x^4+1/x^4)(x^8+1/x^8)(x^16+x^16)(x-1/x)x =(x^2-1/x^2)(x^2+1/x^2)(x^4+1/x^4)(x^8+1/x^8)(x^16+x^16)x =(x^4-1/x^4)(x^4+1/x^4)(x^8+1/x^8)(x^16+x^16)x =(x^8-1/x^8)(x^8+1/x^8)(x^16+x^16)x =(x^16-1/x^16)(x^16+x^16)x =(x^32-1/x^32)x =x^33-1/x^31
〔x+1/x)(x^2+1/x^2)(x^4+1/x^4)(x^8+1/x^8)(x^16+x^16)(x^2-1) 的
1个回答
相关问题
-
(x+1/x)(x2+1/x2)(x4+1/x4)(x8+1/x8)(x16+1/x16)(x2-1)
-
f(x)=1/1+x+2/1+x^2+4/1+x^4+8/1+x^8+16/1+x^16,求f(2)
-
计算[x+(1)/x][x^2+(1)/x^2][x^4+(1)/x^4][x^8+(1)/x^8][x^16+(1)/
-
1/(1+x)+2/(1+x^2)+4/(1+x^4)+8/(1+x^8)=0 求16/(1-x^16)-1/(1-x)
-
(x-1/2)(2x+1)(2x^2+1/2)(4x^4+1/4)(16x^8+1/16)÷(256x^16+1/256
-
f(x)=1/(1+x)+2/(1+x2)+4/(1+x4)+8/(1+x8)+16/(1+x16)求f(2)的值
-
(x+1)(x2+1)(x4+1)(x8+1)(x16+1)
-
计算(x+1/x)(x2+1/x2)(x4+1/x4)…(x16+1/x16)(x2-1)
-
化简求值[(x^2-16/x^2+8x+16)+(x/x-4)]/(1/x^2-16),其中x=根号2+1
-
计算:(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1)(x^32+1)