定义在R上的函数f(x)满足:对任意的α,β∈R,总有f(α+β)-[f(α)+f(β)]=2011,则下列说法正确的是

1个回答

  • 解题思路:先取α=β=0,得f(0)=-2011;再取α=x,β=-x,代入整理可得f(-x)+2011=-[f(x)-f(0)]=[f(x)+2011],即可得到结论.

    取α=β=0,得f(0)=-2011,

    取α=x,β=-x,f(0)-f(x)-f(-x)=2011⇒f(-x)+2011=-[f(x)-f(0)]=[f(x)+2011]

    故函数f(x)+2011是奇函数.

    故选:C.

    点评:

    本题考点: 函数奇偶性的判断.

    考点点评: 本题主要考查函数奇偶性的判断以及抽象函数的应用.解决抽象函数奇偶性的判断问题时,一般采用赋值法.