(1)923−9923+99923=

1个回答

  • 解题思路:(1)整数部分相加减,分数部分相加减;

    (2)根据乘法分配律约分计算;

    (3)提公因数4.9计算;

    (4)提公因数,即原式=9999×(1+9999);

    (5)原式=12×13×(11-1)-260;

    (6)原式=999×(101×99+1)=999×[(100+1)×99+1];

    (7)提公因数5.25计算即可;

    (8)原式=199.9×(1880-1879).

    (1)9

    2

    3−99

    2

    3+999

    2

    3,

    =(9+999-99)+([2/3]+[2/3]-[2/3])

    =909+[2/3],

    =909[2/3];

    (2)(

    3

    8+

    1

    6−

    2

    9)×72,

    =[3/8]×72+[1/6]×72-[2/9]×72,

    =27+12-16,

    =23;

    (3)4.9×5

    1

    2+4.9+3

    1

    2×4.9,

    =4.9×(5.5+1+3.5),

    =4.9×10,

    =49;

    (4)9999+99992

    =9999×(1+9999),

    =9999×10000,

    =99990000;

    (5)11×12×13-12×13-260,

    =(11-1)×12×13-260,

    =10×12×13-260,

    =1560-260,

    =1300;

    (6)101×99×999+999,

    =999×(101×99+1),

    =999×[(100+1)×99+1];

    =999×[100×99+99+1],

    =999×[9900+99+1],

    =999×10000,

    =9990000;

    (7)5

    1

    4×3.8+6.2×5.25,

    =5.25×(3.8+6.2),

    =5.25×10,

    =52.5;

    (8)1880×199.9-1999×187.9,

    =1880×199.9-199.9×1879,

    =(1880-1879)×199.9,

    =1×199.9,

    =199.9.

    点评:

    本题考点: 分数的四则混合运算;整数四则混合运算;运算定律与简便运算.

    考点点评: 考查了运算定律与简便运算,四则混合运算.注意运算顺序和运算法则,灵活运用所学的运算律简便计算.