设正三棱锥S-ABC,底面正三角形内心O,SO为高,是3,连结AO,并延长与BC相交于D,连结SD,根据三垂线定理,SD⊥BC,
设AB=x,则OD=(x√3/2)/3=x√3/6,
根据勾股定理,SD=√(SO^2+OD^2)=√(9+x^2/12),
S△SBC=SD*BC/2=[x√(9+x^2/12)]/2=18√3/3=6√3,
x^4+108x^2-5184=0,
(x^2+144)(x^2-36)=0,
x^2=36,x=6
S△ABC=√3AB^2/4=9√3,
VS-ABC= 9√3*3/3=9√3.