若a>0,b>0,f(x)=根号下(ax^2+bx)的定义域={x|ax^2+bx>=0}=(负无穷,-b/a]U[0,
1个回答
ax^2+bx>=0
x(ax+b)>=0
解不等式,得:x>=0或x0,b>0,所以可判断-b/a
相关问题
若f(x)=ax^2+bx+c,(a>0,x∈R),f(-1)=0,则2a+b
lim(x→0) [根号(ax+b)-根号(b)]/[根号( bx+a)-根号(a)] (0
设f(x)=3ax2-2bx+c,若a-b+c=0,f(0)>0,f(1)>0.
设函数f(x)=ax^2+bx(a<0),若2a+b>0,则当x>0时有()
已知a>0,函数f(X)=ax2+bx+c.若x0满足关于x的方程2ax+b=0,则
已知二次函数f(x)=ax^2+bx+c(a>0),一次函数g(x)=2ax+b,若|f(0)|=1,f(0)=0,f(
设全集U=R,集合A={x|x^2+ax-12=0},B={x|x^2+bx+b^2-28=0},若A∩CUB={2},
设全集U=R,集合A={x|x^2+ax-12=0},B={x|x^2+bx+b^2-28=0},若A∩CUB={2},
设f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求证:
设f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求证: