错在应用基本不等式时,未注意“一正二定三相等”这前提条件.
事实上,是取不到最小值2的,
因为y=t+1/t≥2取等时,t=1/t→t=1.
此时,√[(sinx)^2+4]=1→(sinx)^2=-3,当然不可能!
正确的解法如下:
设t=√((sinx)^2+4),
因0≤(sinx)^2≤1,故t∈[2,√5].
构造函数f(t)=t+1/t,则依对勾函数单调性知,
t∈[1,+∞)时,f(t)单调递增,
∴t∈[2,√5]时单调递增.
故所求最小值:y|min=f(2)=2+(1/2)=5/2;
所求最大值为:y|max=f(√5)=√5+(1/√5)=(6√5)/5.