相交成60度的两条直线和一个平面ABCD所成的角分别为30度和45度,求这两条直线在平面内的射影所成的角的余弦值

1个回答

  • 设PE与平面ABCD成45°,PF与平面ABCD成30°.

    过P做PG⊥平面ABCD,垂足为G,连接EG,FG

    ∴∠PEG = 45°

    ∴∠PFG = 30°

    设PG = a,

    ∵∠PEG = 45°

    ∴PE = √2a,EG =a

    ∵∠PFG = 30°

    ∴PF = 2a,FG = √3a

    ∵EPF = 60°

    ∴EF"

    = PE"+PF"-2PE×PFcos∠EPF

    = 2a" + 4a" - 2×√2a×2a×(1/2)

    = (6-2√2)a"

    ∴cos∠EGF

    = (GE"+GF" -EF")/2GE×GF

    = [a" + 3a" - (6-2√2)a"]/2a×√3a

    =(2√2-2)/2√3

    =[(√6)-(√3)]/3