AE交CF于O
AE和CF分别为角A、角C的角平分线
∠AOF=∠OAC+∠OCA=(∠BAC+∠BCA)/2=(180-60)/2=60
∠AOC=180-∠AOF=180-60=120
过O作直线OG交AC于G,使∠AOG=∠AOF
则△AOF≌△AOG,AF=AG
△COE≌△COG,CE=CG
所以
AF+CE=AG+CG=AC
AE交CF于O
AE和CF分别为角A、角C的角平分线
∠AOF=∠OAC+∠OCA=(∠BAC+∠BCA)/2=(180-60)/2=60
∠AOC=180-∠AOF=180-60=120
过O作直线OG交AC于G,使∠AOG=∠AOF
则△AOF≌△AOG,AF=AG
△COE≌△COG,CE=CG
所以
AF+CE=AG+CG=AC