∵(√a+ √b+√c)^2=3(√ab+√bc+√ca)
(√a)^2+(√b)^2+(√c)^2+2√ab+2√bc+2√ca-3√ab-3√bc-3√ca=0
(√a)^2+(√b)^2+(√c)^2-√ab-√bc-√ca=0
各项同乘以2,整理后得:
(√a-√b)^2+(√b-√c)^2+(√c-√a)^2=0
∵左边各项均为(+),各项正数之和为零,则每一项均为零,即:
(√a-√b)^2=0,(√b-√c)=0,(√c-√a)^2=0.
√a-√b=0,a=b;
√b-√c=0,b=c;
√c-√a=0,c=a.
∴a=b=c.
∴△ABC为等边三角形.