过O作OF⊥AD交AD于F.
∵ABCD是矩形,∴AO=CO、CD⊥AD.
∵OF⊥AD、CD⊥AD,∴OF∥CD,又AO=CO,∴OF是△ACD的中位线,∴CD=2OF=7.2.
∵AD⊥CD、DE⊥AC,∴由射影定理,有:CE×AC=CD^2=7.2^2.
∵AE/AE=1/3,∴AE=3CE,∴AC=4CE,∴4CE^2=7.2^2,∴CE^2=3.6^2,∴CE=3.6,
∴AE=3CE=3×3.6=10.8,∴AC=AE+CE=10.8+3.6=14.4(cm).
∴矩形的对角线长是14.4cm.